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Abstract

Scholars are often interested in questions that examine interactions between units
at two different levels. For example, counties are nested within states and diffusion
processes might take place at both levels of analysis. Building on recent research from
the spatial econometrics and multilevel modeling literature, we propose a method for
modeling spatial interdependencies in two hierarchical levels with binary and ordered
outcomes. We propose a Bayesian approach that estimates spatial autoregressive pa-
rameters at both hierarchical levels, and provide software to estimate this model. Our
Monte Carlo results demonstrate that failing to account for the nested structure of the
data leads to biased parameter estimates. We demonstrate the utility of our approach
by analyzing the causes of civil rights protests in the United States in the 1960s.
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1 Introduction

Analyzing data that have a nested structure is popular in Political Science. Two examples

of data that contain a nested structure include units that are each observed across multiple

time periods (e.g., time-series-cross-section data), and units at different levels of analysis,

(e.g., voters in a county). Due to the hierarchical nature of the data, estimating models that

fail to account for the nested structure of the data can lead to inaccurate inferences.

Another popular methodological approach that has been garnering popularity is the

spatial analysis of political data. Many Political Science theories involve the diffusion of

some policy across units or an occurrence of a certain phenomenon in some units affecting

outcomes in other units. For example, Franzese, Hays and Cook (2016) model the civil war

diffusion process in Sub-Saharan Africa and estimate the increased probability of civil war

in Guinea-Bissau due to internal instability in Senegal. A budding vein of research now

combines advances in spatial econometrics and hierarchical modeling to model diffusion at

potentially multiple levels of analysis.

We contribute by introducing a spatial-hierarchical strategy for categorical outcomes that

are binary or ordered. We introduce a hierarchical spatial probit approach for binary and

ordered outcomes.
1

We use a well-known “data augmentation algorithm” to extend the

hierarchical spatial model for continuous outcomes to binary and ordered outcomes (Albert

and Chib, 1993). The entire process ultimately involves generating simulated values of the

latent outcome variable y
∗
by using a multivariate truncated normal distribution, and then

sequentially drawing from full conditional posterior distributions for other parameters of

1
Our proposed methodology is easily extendable to cases with ordered outcomes. We summarize this in

the paper and we discuss this in detail in Appendix I.
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interest.
2

We reach two main conclusions from a series of Monte Carlo experiments. First, as

expected, estimating a spatial autoregressive model that accounts for diffusion at only one

level results in inaccurate inferences when there is diffusion at multiple levels. Second, we

find that our proposed hierarchical spatial model that accounts for diffusion across units

at multiple levels can be used as a general modeling strategy. We find that estimating our

recommended model results in accurate inferences in such a scenario; the spatial parameter

for the level in which diffusion does not occur is statistically insignificant. While intuitive,

this is important because the lack of false positives highlights how our model can be used as

a robustness check to verify the lack of diffusion among higher-level units.
3

Spatial Econometrics and Hierarchical Models

For the most part, hierarchical models and spatial econometrics have developed as two dis-

tinct fields.
4
The hierarchical modeling literature implicitly assumes that units in a common

group share some similar characteristics. The typical example often used is that students

in the same classroom may often have correlated errors because they have the same teacher

and share similar experiences within the classroom. A common approach in economics has

been to model the unobserved relationship through the use of robust standard errors (e.g.,

Angrist, Bettinger and Kremer, 2006). In contrast, hierarchical models explicitly deal with

this by nesting lower-level units within high-level units.

2
We provide an R package that estimates this model and calculates substantial effects of interest.

3
This is assuming the estimator satisfies all assumptions for unbiased parameter estimates and accurate

standard errors.
4
Similar to Gelman et al. (2013), we use the terms multilevel models and hierarchical models interchange-

ably.
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The focus of the spatial econometrics literature is to explicitly model theoretically inter-

esting diffusion processes. For example, Simmons and Elkins (2004) examines how liberal

economic policies have diffused across countries over time. There have been recent advances

in the spatial econometrics literature that focus on combining multilevel and spatial mod-

eling. For example, Dong and Harris (2015) proposed a hierarchical spatial autoregressive

model with which they estimated the effects of various factors on the leasing price of land

parcels in China, where land parcels are grouped into various districts. Advances in spatial

and hierarchical modeling combined with data availability has created opportunities to im-

prove our understanding of politics. For example, while Mazumder (2018) investigates the

persistent effects of civil rights protests, scholars might also want to investigate the condi-

tions why protests are likely to occur in some counties but not in others. In such a case,

scholars might want to consider the following two features. First, counties are nested within

states. Different states might have different political, social and economic conditions that

would affect the common baseline propensity of civil rights protests to occur in counties

within the same state. Secondly, there might potentially be a spillover effect between states.

In other words, there could potentially be a weak diffusion process between states themselves

as well. The model we propose takes into account of the nested structure as well as providing

a way to test whether there might be a diffusion process among higher-level units as well.
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2 Spatial Autoregressive Model

One of the most popular models used in spatial econometrics is the spatial autoregressive

(SAR) model,
5
which can be expressed as

y = ρWy +Xβ + ϵ, (1)

where y is anN×1 vector of outcomes in allN units, ρ is the spatial autoregressive coefficient,

X is a matrix of predictors with dimensions N × K, β is an K × 1 vector, and W is an

N ×N spatial weights matrix.

This model has been used across a broad range of applications that seek to understand

how the outcome in one unit affects those in others, such as party positions (Williams and

Whitten, 2015) and military spending (George and Sandler, 2018). However, there are cases

in which scholars may be interested in modeling the relationship between outcomes of higher-

level units in addition to the diffusion in outcomes among lower-level units. This is similar to

the motivation behind the use of hierarchical models, but a little different in terms of its focus.

For example, hierarchical models might be used to study the effect of voter characteristics

on vote choice. Naturally, voters are grouped into different states and the errors amongst

the voters in a given state might be correlated. One advantage of hierarchical modeling has

been to increase efficiency by partial pooling (Ghitza and Gelman, 2013).
6

5
Readers interested in the full range of commonly models used in spatial econometrics can refer to

Halleck Vega and Elhorst (2015).
6
Partial pooling may be thought of as “compromising between the two extremes of excluding a categorical

predictor from a model (complete pooling), or estimating separate models within each level of the categorical
predictor (no pooling).” (Gelman and Hill, 2006, 252)
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3 Hierarchical Spatial Probit Autoregressive Model

We propose a binary outcome model for estimating spatial autoregressive coefficients that

accounts for the hierarchical nature of data. Our proposed hierarchical spatial autoregressive

(HSAR) probit model is an extension of the work of Dong and Harris (2015), who focused

on the continuous outcomes case.
7

We can first conceptualize the outcome as a continuous latent variable, y
∗
, such that

y
∗
= ρWy

∗
+Xβ +∆θ + ϵ, (2)

where there are i = 1, ..., N lower-level units nested in j = 1, ..., J higher-level units. y
∗
is

a N × 1 vector of the latent, continuous outcome variable, W is an N × N spatial weights

matrix for lower-level units, X is an N × K matrix of covariates, β is a K × 1 vector of

parameters, ∆ is a N ×J matrix mapping lower-level units to higher-level units, θ is a J ×1

vector of random effects, and ϵ is an N × 1 vector of white noise.
8

The model assumes that θ follows its own autoregressive process and that there is a

7
Without loss of generality, our model is a stylized version in which higher-level predictors have been

omitted. As we show later, this is to make our model easily comparable to the original SAR probit model.
Practitioners can easily extend the model presented here to include covariates for the higher-level units.

8
As an example of a ∆ matrix, consider a 6 × 3 ∆ matrix consisting of 6 lower-level units with 2

lower-level units in each higher-level unit. This can be represented by the following ∆ matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)
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spatial weights matrix M of dimensions J × J as shown below

θ = λMθ + u ⇒ θ = (I − λM)−1u (4)

u ∼ N (0, σ2
uIJ) (5)

ϵ ∼ N (0, IN) (6)

θ ∼ N (0, σ2
u(B′

B)−1) where B ≡ IJ − λM (7)

As is standard in the literature, we assume that we observe a value of 1 for the binary

outcome, yij, if the latent variable y
∗
ij is (weakly) positive and 0 otherwise:

yij = 1 ⟺ y
∗
ij ≥ 0 (8)

yij = 0 ⟺ y
∗
ij < 0 (9)

Similar to Dong and Harris (2015), we estimate the parameters of interest by adopting

a Bayesian approach and implementing Markov Chain Monte Carlo (MCMC) methods. In

particular, we use the standard Metropolis-within-Gibbs algorithm in which the parameters

are estimated using a Gibbs algorithm whenever the full conditional distributions are of a

known form and with a Metropolis algorithm when the distribution is not of a recogniz-

able form. This is standard in the Bayesian literature and has also been used in spatial

econometrics to estimate the standard SAR model (LeSage and Pace, 2009).
9

9
The Metropolis-within-Gibbs sampling technique has been the standard algorithm for estimating spa-

tial econometric models when using Bayesian methods. We are aware that Bayesian statistics has seen a
development of various Markov Chain Monte Carlo algorithms. In particular, the Hamiltonian Monte Carlo
algorithm popularized with the development of Stan (Carpenter et al., 2017) has seen wide usage for estimat-
ing various models due to its flexibility and ease of use. However, we found that Stan is too computationally
inefficient for estimating spatial econometric models with a large number of observations. Wolf, Anselin and
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Estimating a binary outcome model using probit is a simple extension of estimating a

linear model under the Bayesian framework. If we assume that we observe y
∗
, we can proceed

as usual in estimating the relevant parameters of interest. This is the insight that Albert and

Chib (1993) provide in estimating the probit model and has been referred in the Bayesian

literature as data augmentation based on Tanner and Wong (1987). Of course, since we do

not actually observe y
∗
, we need to generate them. Intuitively, the appropriate values of y

∗

can be generated under the restriction that y
∗
i is positive (negative) if the observed yi is 1 (0).

Conceptually, this involves using a truncated normal distribution which can be implemented

through other more efficient sampling algorithms such as inversion sampling.
10

It is well-

known that the rejection sampling can suffer from computational inefficiencies (Lynch, 2007)

and often a form of inversion sampling is implemented in practice.

However, there is a crucial difference when estimating the probit model in the spatial

econometrics literature. In contrast to the standard probit model, the errors are no longer

assumed to be independent and the error structure is more complex. We need to thus

use truncated multivariate normal distribution to generate the latent variables y
∗
instead

of (independent) truncated univariate normal distributions as is the case with the standard

probit model (e.g., Geweke, 1991). Standard results in statistics demonstrate that conditional

distributions of a truncated multivariate normal distribution can be reduced to a truncated

univariate normal distribution (Geweke, 1991; Kotecha and Djuric, 1999). Thus, a type

of Gibbs sampling procedure can be implemented to sample from a truncated multivariate

Arribas-Bel (2018) suggest that this is due to the computational burden of calculating the log determinant
term for each leapfrog step. We refer the readers to Wolf, Anselin and Arribas-Bel (2018) for more details
on this matter.

10
An inversion sampling mechanism involving using a draw from a uniform distribution and the inverse-

distribution function (Lynch, 2007, 203).
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normal distribution.
11

The likelihood can be represented as follows for the probit model with binary outcomes

:(Jackman, 2009)

L(β; y,X) = p(y∣X, β) =
n

∏
i=1

F (xiβ)yi[1 − F (xiβ)1−yi] (10)

where F (⋅) represents the cumulative normal distribution.

Deriving the posterior distribution for the probit model in practice requires the use of the

data augmentation approach for probit models (Tanner and Wong, 1987; Albert and Chib,

1993). This essentially involves estimating a new set of parameters, namely the set of N

latent variables (e.g., Smith and LeSage, 2004).

We take a similar approach by adapting the derivations from Dong and Harris (2015).

Our first assumption is that the variance of the error, σ
2
e , is 1 for identification purposes.

Second, we assume that there is no covariance between ϵ and θ (the vector of random effects).

These can be written as:

V ar(ϵ) = IN (11)

Cov(ϵ,θ) = 0 (12)

Based on these above assumptions, the variance-covariance matrix of y
∗
in Dong and

Harris (2015):

11
In practice, this can be implemented conveniently using the package tmvtnorm in R (Wilhelm and

Manjunath, 2010).
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V ar(y∗) = (IN − ρW)−1V ar(∆θ + ϵ)((IN − ρW)−1)′ (13)

= A
−1
V ar(∆θ + ϵ)(A−1)′, where A ≡ IN − ρW (14)

= A
−1(∆V ar(θ)∆′

+ V ar(ϵ) + 2Cov(∆θ, ϵ))(A−1)′ (15)

= A
−1(∆V ar(θ)∆′

+ V ar(ϵ))(A−1)′ ∵ Equation 12 (16)

= A
−1(∆(B′

B)−1∆′
+ IN)(A−1)′ ≡ V (17)

where, B ≡ IJ − λM as per equation 7. As will be seen later, V will play an important role

in using the truncated multivariate normal distributions for generating y
∗
.
12

4 Estimating the Model

We adopt a Bayesian Markov Chain Monte Carlo (MCMC) method for model estimation.

The basic Bayesian identity used for estimating unknown parameters is (Gelman et al., 2013):

p(Θ∣Y) ∝ L(Y∣Θ) × π(Θ) (18)

posterior ∝ likelihood × prior (19)

12
In equations 13 and 15, we use the rule Cov(Ax) = AxA

′
.
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We employ diffuse priors to allow the likelihood to be dominant in estimating the parame-

ters.
13

The priors may be specified as follows:

π(β) ∼ N (c0,T0) (20)

π(ρ) ∼ U[ 1
νmin

, 1] ∝ 1 (21)

π(λ) ∼ U[ 1

ν∗
min

, 1] ∝ 1 (22)

π(θ∣λ) ∼ N(0, ((I − λM)′(I − λM))−1) (23)

where A = IN − ρW, νmin is the minimum eigenvalue of the spatial weights matrix for the

lower-level units, W, and ν
∗
min is the minimum eigenvalue of the spatial weights matrix of

high-level units, M. We employ diffuse priors to let the data dominate the posterior. This

approach is standard and has been adopted by spatial econometrics researchers in past works

(LeSage and Pace, 2009). In practice, this involves centering the prior for β on a vector of

zero’s for the mean (c0) with a large variance (T0).

The likelihood function in terms of the latent variable y
∗
may be specified as follows:

L(y∗∣ρ, λ,β,θ, σ2
u) = (2π)−N/2∣A∣ exp { −

1

2
(Ay

∗
−Xβ −∆θ)′(Ay

∗
−Xβ −∆θ)} (24)

The respective conditional distributions for each parameter or set of parameters based

13
The basic derivations for the continuous outcome are detailed in Dong and Harris (2015). We reproduce

the derivations here with some minor changes such as working with the latent variable y
∗
instead of y and

constraining σ
2
e to 1 necessary for identification purposes.
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on the following Bayesian identity (Dong and Harris, 2015):

p(ρ, λ,β,θ,y∗∣y) ∝ L(y∗∣ρ, λ,β,θ, σ2
u) ⋅ π(ρ) ⋅ π(λ) ⋅ π(β) ⋅ π(θ∣λ, σ2

u) ⋅ π(σ2
u) (25)

posterior ∝ likelihood × prior (26)

where π(ρ) ⋅ π(λ) ⋅ π(β) ⋅ π(θ∣λ, σ2
u) ⋅ π(σ2

u) denote the priors for the respective parameters.

The basic strategy is to employ a combination of Gibbs sampling and the Metropolis-

Hasting sampling algorithms.
14

The researcher needs to be able to derive the full conditional

distribution in a recognized form to be able to employ the Gibbs sampling algorithm (Smith

and LeSage, 2004). As will be seen, while some sets of parameters can be estimated using the

Gibbs sampling algorithm, others will have to be estimated using the Metropolis-Hastings

algorithm. An additional complication in estimating ρ and λ for discrete outcomes is neces-

sarily having to use data augmentation. Below, we reproduce the results of the derivations

for the conditional distributions for the probit model by constraining σ
2
e to 1.

Generating y
∗

We generate samples of y
∗
as follows (Albert and Chib, 1993):

y
∗
ij∣ρ,β,θ,y ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

MVN (ki, vi)1(y∗ij ≥ 0) yij = 1

MVN (ki, vi)1(y∗ij < 0) yij = 0

(27)

14
Readers may refer to Jackman (2009) and Gelman et al. (2013) for a detailed reference on these algo-

rithms.
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where 1 is the indicator function, vi denotes the Vii element in the variance-covariance

matrix of y
∗
, and ki is the i

th
element of the N × 1 column vector K ≡ A

−1(Xβ). Thus,

equation 27 allows us to generate the latent values, y
∗
ij, while simultaneously accounting for

spatially correlated errors. Readers familiar with the data augmentation technique will note

that the results above are slightly different from the case of truncated univariate normal

distributions as was used for the (non-spatial) probit model by Albert and Chib (1993).

The added complication in generating y
∗
ij here in the context of spatial econometrics is

the interdependence of errors (Franzese, Hays and Cook, 2016). Naively using independent

truncated univariate normal distributions leads to erroneous inferences in this case. The

solution to this problem is to use the truncated multivariate normal distribution (LeSage

and Pace, 2009; Wilhelm and de Matos, 2013).

Conditional Posterior Distribution for β

p(β∣y∗
, ρ, λ,θ, σ

2
u) ∝ L(y∗∣ρ, λ,β,θ, σ2

u) ⋅ π(β) (28)

∝ exp{ −
1

2
(Ay

∗
−Xβ −∆θ)′(Ay

∗
−Xβ −∆θ)} × exp{ −

1

2
(β −M0)′T−1

0 (β −M0)}

(29)

∝ exp{ −
1

2
β

′[X′
X +T

−1
0 ]β + [(Ay

∗
−∆θ)′X +T

−1
0 M0]β +C} (30)

The basic logic behind deriving the full conditional distributions is to treat priors that do

not contain the parameters of interest as constants. This allows us to simplify the original

expression summarizing the relationship between the posterior on the one hand and the

likelihood and the prior on the other as shown above. We can then just work with the

12



kernel of the distributions by omitting any constants that do not affect the proportionality:

equations 29 and 30 show how the conditional distribution for β is derived after omitting

the priors for the parameters that are not of interest and working with the kernels. It is

well-known that this form can be simplified further by making use of the properties of the

normal distribution (Smith and LeSage, 2004). If we focus on the terms within the brackets,

the expression above simplifies to the following:

p(β∣y∗
, ρ, λ,θ, σ

2
u) ∼ MVN (Mβ,Σβ) (31)

where Σβ ≡ [X′
X + T

−1
0 ]−1 and Mβ ≡ Σβ[X′(Ay

∗ −∆θ) + T
−1
0 M0]. Equation 31 is the

simplified expression from combining the likelihood with the prior shown in equation (20).

Equation 31 shows that we can use multivariate normal distribution with mean Σβ and

variance Mβ to draw updated values of β.

Conditional Posterior Distribution for θ

The logic for updating θ is very similar to the logic for updating β (Dong and Harris, 2015):

π(θ∣λ, σ2
u) ⋅ L(y∗∣ρ, λ,β,θ, σ2

u) (32)

θ∣λ, σ2
u ∼ MVN (Mθ,Σθ) (33)

where Σθ ≡ [∆′
∆+(σ2

u)−1B′
B]−1 and Mθ ≡ Σθ[∆′(AY−Xβ)]. Equation 32 shows the full

conditional distribution for θ from which new values may be drawn based on the updated

13



values of λ and σ
2
u.

Conditional Posterior Distribution for σ
2
u

The conditional posterior distribution for σ
2
u is (Dong and Harris, 2015):

σ
2
u ∼ IV(J

2
+ a0,

θ
′
B

′
Bθ

2
+ b0) (34)

where IV denotes the inverse-gamma distribution and a0 and b0 are parameters set a priori

by the researcher.
15

Conditional Posterior Distribution for λ

The conditional posterior distribution for λ is (Dong and Harris, 2015):

p(λ∣y∗
, ρ,β, σ

2
u,θ) ∝ π(θ∣λ, σ2

u) ⋅ π(λ) (35)

∝ ∣IJ − λM∣ × exp { −
1

2σ2
u

θ
′
B

′
Bθ} (36)

whereB = IJ−λM. Equation 35 is not a distribution of a known form and we will have to use

the Metropolis-Hastings sampling algorithm. Instead of working with the acceptance ratio

directly, we use a logged-transformed version of the ratio for numerical stability purposes

(Hoff, 2009).

15
We set these to 0.01 similar to Dong and Harris (2015).
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Conditional Posterior Distribution for ρ

p(ρ∣λ,β,θ,y∗
,y) = p(ρ, λ,β,θ,y∗∣y)

p(λ,β,θ,y∗∣y) (37)

∝ p(ρ, λ,β,θ,y∗∣y) (38)

∝ π(ρ) ⋅ π(y∗∣ρ, λ,β,θ, σ2
u) (39)

∝ det ∣IN − ρW∣ × exp{ −
1

2
(Ay

∗
−Xβ −∆θ))

′
(Ay

∗
−Xβ −∆θ))} (40)

where A = I − ρW. Similar to the conditional distribution of λ, equation (39) is not a

distribution of a known form and we will have to use the Metropolis-Hastings sampling

algorithm. Once again, we do not work with the acceptance ratio directly but instead use a

logged-transformed version for the purposes of numerical stability (Hoff, 2009).

5 Model Implications

Before we delve into the Monte Carlo simulations, it is worth elaborating what our model

entails. First, we note that a multilevel random intercept probit model is a special case of

our model when their is no spatial interdependence at both levels (i.e., with the restrictions

ρ = 0 and λ = 0).

y
∗
= ρWy

∗
+Xβ +∆θ + ϵ θ = (I − λM)−1u (41)

⇒ y
∗
= Xβ +∆u + ϵ where u ∼ N (0, σ2

uIJ) (42)

(43)
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The main implication here is that the multilevel random intercept probit model is likely

to perform similarly to our proposed HSAR probit models when both λ and ρ are relatively

low. However, we would expect the multilevel random intercept probit model to render

biased estimates of β as ρ increases because the multilevel random intercept probit model is

not properly accounting for the spatial diffusion process.

Second, when just λ = 0, note that our model simplifies into a SAR probit model with

a random intercept. It is worth highlighting that this is different from the traditional SAR

probit model in the spatial econometrics literature which does not contain a random inter-

cept.

y
∗
= ρWy

∗
+Xβ +∆θ + ϵ θ = (IJ − λM)−1u (44)

⇒ y
∗
= ρWy

∗
+Xβ +∆u + ϵ where u ∼ N (0, σ2

uIJ) (45)

Note that even when λ = 0, using the traditional SAR probit model will still induce bias in

estimating β because there is a random intercept as noted above that the regular SAR probit

model does not account for.
16

In this case, omitting a confounder will induce an attenuation

bias for the independent variable of interest (Neuhaus and Jewell, 1993; Cramer, 2003). As

such, although the random intercept induced by setting λ = 0 will not be correlated with

16
At this point, it may worth reminding ourselves that the condition for inducing bias in the parameter

for the independent variable of interest for binary outcomes is different from that of a linear additive model.
Let us posit a linear model of the form

yi = β0 + β1X1i + β2X2i + ϵi (46)

where X1 is the main independent variable of interest and X2 is the confounder. When X2 is correlated with
both X1 and with y, we will obtain a biased estimate for β1 if we mistakenly omit X2. The condition of being
correlated with both the independent variable variable and the dependent variable is no longer necessary to
induce bias in the case of binary outcomes (Neuhaus and Jewell, 1993; Cramer, 2003).
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the independent variable, not accounting for this random effect by using the traditional

SAR probit model will still induce attenuation bias in estimating β and subsequently, an

inflationary bias in estimating ρ.

If the researcher is uncertain about the existence of spatial processes, the cost of esti-

mating our proposed HSAR solution when there are no spatial processes at both levels is

efficiency losses. The benefit of treating the HSAR model as a general model is unbiasedness

(assuming all other model assumptions hold) regardless of the existence of no spatial process

at the both levels, a spatial process at one level, or spatial interdependence at both levels.

Thus, the researcher should carefully weigh the benefits and costs, when deciding on the

type of multilevel model to estimate.

6 Monte Carlo Simulations

We conduct a series of Monte Carlo simulations to assess the validity of our proposed HSAR

model. We test the robustness of our model across a wide range of parameter combinations

and conditions. We set the number of contiguous higher-level units such that J = {16, 49}.

We generate 20 random districts within each J . This results in a combined total of N =

{320, 980} low-level units. The N × J matrix ∆ maps each of the lower level units, i, to

the higher-level units, j. The W spatial weights matrix was generated by simulating fake

counties on a map of U.S. states and using three nearest neighbors. The M spatial weights

matrix was generated by using a rook contiguity matrix.
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y
∗
= ρWy

∗
+Xβ +∆θ + ϵ (47)

θ = λMθ + u ⇒ θ = (I − λM)−1u (48)

u ∼ N (0, σ2
uIJ) (49)

ϵ ∼ N (0, IN) (50)

θ ∼ N (0, σ2
u(B′

B)−1) B ≡ IJ − λM (51)

yij = 1 ⟺ y
∗
ij ≥ 0 (52)

yij = 0 ⟺ y
∗
ij < 0 (53)

As discussed in detail above, the DGP may be summarized by the above equations. We

vary the parameters of ρ and λ such that ρ, λ ∈ {0, 0.3, 0.5}. Thus, there are 9 unique

combinations of different values for these two parameters. Note that some of these com-

binations render some special cases of the above DGP. For example, when both ρ and λ

are equal to zero the above model becomes a random intercept probit model. When just

λ equals zero, our model becomes a SAR probit model with random intercept. We set the

values of the intercept (β0) and the coefficient of X1 (β1) as -0.5 and 1.0, respectively similar

to Wucherpfennig et al. (2021). We generate values of X1 from an independent standard

normal distribution.
17

Since the conditional distributions of ρ and λ do not have known distributions, we adopt

17
In Appendices B, D, F, and H, we conduct further simulations where we draw X1 from a spatially

correlated process. X1 = (I − ρxW)−1ϵ where we set ρx to 0.3 and ϵ is a draw from the standard normal
distribution. The results from these simulations are similar to those shown in the manuscript when X1 is
drawn from a standard normal distribution, i.e., when ρx = 0
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a random walk Metropolis-Hastings for estimating these two parameters. Past research on

Bayesian statistics differ on the appropriate acceptance rate for the Metropolis algorithm.

We allowed the step size to auto-tune itself for the burn-in period to aim for an acceptance

rate of approximately 50% per the advice of LeSage and Pace (2009). For numerical stability,

we logged the acceptance ratio instead of using the ratio directly (Hoff, 2009).

The initial values for running the chain are set to 0 for all the parameters. This allows

us to assess whether the algorithm allows the iteration to be sampled from values with high

posterior densities. We ran 100 trials for each combination of parameters. For reasons of

computational demands, we set the number of draws to 1000 for each trial and discarded the

first 200 draws as a burn-in. We compare our results to the multilevel probit model imple-

mented with the lme4 package (Bates et al., 2015) and the SAR probit model implemented

with the ProbitSpatial package (Martinetti et al., 2022).

7 Monte Carlo Results

Below, we focus our discussion to the results for the binary probit case. For a given data-

generating process, we estimated our proposed HSAR probit model, the traditional SAR

probit model and the multilevel random intercept probit model.
18

The round circles, dia-

monds and squares represent the mean estimates recovered from the HSAR model, multilevel

probit model and the traditional SAR model, respectively The dashed red line represents

the true value of β1 = 1.0. We first present the results for the Monte Carlo simulations with

49 high-level units and 980 low-level units with σ
2
u set to 1 in Figure 1.

The results are consistent with our expectations. We see that there is an increasing

18
We refer the readers to the appendix for the results for the ordered probit model.
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Figure 1: Bias in β̂1 for J = 49, N = 980, σ
2
u = 1.0

• HSAR ◆ Multilevel ■ SAR

degree of attenuation bias for the multilevel random intercept probit model as ρ increases in

the true DGP because the model is incorrectly assuming that there is no spatial process. In

other words, for a given level of λ, there is an increasing degree of attenuation bias for the

multilevel random intercept probit model as ρ increases. We also see that the SAR probit

model induces attenuation bias even when λ equals zero as expected. As discussed above,

the traditional SAR probit model does not account for the random intercept and using this

model incorrectly to estimate an HSAR process induces an attenuation bias for estimating

β1. We note that even using the HSAR model to estimate an HSAR process induces a

noticeable degree of attenuation bias when ρ = 0.5. The attenuation bias that we observe

here is comparable to those of past studies on spatial probit models (Franzese, Hays and

Cook, 2016; Wucherpfennig et al., 2021).

The Monte Carlo results for ρ̂ confirm our expectations as shown in Figure 2. The

20



red dashed line represents the true values of ρ. As discussed above, the random intercept

induces attenuation bias for estimating β1, and this in turn induces an inflationary bias for

estimating ρ. In particular, it is worth emphasizing that we observe this phenomenon even

when λ = 0—i.e., there is no spatial process amongst the high-level units.

Figure 2: Bias in ρ̂ for J = 49, N = 980, σ
2
u = 1.0

• HSAR ■ SAR

Figure 3 shows the Monte Carlo simulation results when σ
2
u = 0.5. We see that the HSAR

probit model once again shows the smallest degree of bias for estimating β1. One difference

we observe in Figure 3 is that while the multilevel random intercept probit model performed

better than the traditional SAR probit model for all combinations of ρ and λ when σ
2
u = 1.0,

the multilevel model performs worse than the SAR probit model when ρ = 0.5 and σ
2
u = 0.5.

We also present the results when J = 16, i.e. when there are 16 high-level units. Figure 4

shows that the multilevel random intercept probit model and the HSAR probit model perform

similarly when ρ = 0. However, once again, the performance of the multilevel model becomes

21



Figure 3: Bias in β̂1 for J = 49, N = 980, σ
2
u = 0.5

• HSAR ◆ Multilevel ■ SAR

worse as ρ increases. We also see that, once again, using the traditional SAR probit model

induces an attenuation bias in recovering β1 estimates.

8 Calculation of Effects

Researchers on spatial econometrics have warned that we cannot directly infer effects from

estimates (e.g., Franzese, Hays and Cook, 2016). Since the dependent variable is discrete, we

would be interested in finding out, for example, how the propensity for the ith observation

to experience an event would change given that there is some change in the value of a

variable, xk, for that same unit, i.
19

While the calculation of such effects are not simple,

past scholars have shown the derivation for such quantities of interest (Beron and Vijverberg,

19
It is worth highlighting that other quantities of interest can also be calculated in spatial econometrics.

For example, a researcher might be interested in how the propensity for the ith observation to experience
an event would change given that there is some change in the variable xk for unit j.
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Figure 4: Bias in β̂1 for J = 16, N = 320, σ
2
u = 1.0

• HSAR ◆ Multilevel ■ SAR

2004; Franzese, Hays and Cook, 2016). The derivation below is quite similar to these past

derivations.
20

In the case of the hierarchical spatial probit model, the probability of the ith observation

experiencing an event is

p(yi = 1∣X) = p([(I − ρW)−1Xβ]i + [(I − ρW)−1∆θ]i + [(I − ρW)−1ϵ]i) (54)

= p([(I − ρW)−1Xβ]i + [(I − ρW)−1∆B
−1
u]i + [(I − ρW)−1ϵ]i) (55)

= p(vi < [(I − ρW)−1Xβ]i) (56)

= Φ{[(I − ρW)−1Xβ]i/σvi} (57)

where B = IJ − λM, Φ is the CDF of the standard normal distribution and σvi is the iith

20
Readers may want to compare the derivations below to those of Franzese, Hays and Cook (2016,

155,160).
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element of the variance-covariance matrix V ≡ A
−1(∆(B′

B)−1∆′ + IN)(A−1)′ mentioned

above.
21

Let xik stand for variable xk for observation i. To calculate the change in propensity for

the ith observation to experience an event due to a change in xik (direct effect), we apply

the chain rule and derive the following

∂p(yi = 1∣X,M,W)
∂xik

= ϕpdf{[(I − ρW)−1Xβ]i/σvi}[(I − ρW)−1βk]ii/σvi (59)

Similarly, the change in propensity for the ith observation to experience an event due to

a change in xk for some other unit j (indirect) would be

∂p(yi = 1∣X,M,W)
∂xik

= ϕpdf{[(I − ρW)−1Xβ]i/σvi}[(I − ρW)−1βk]ij/σvi (60)

The total effect of a change in a predictor on both its own outcome and the outcome of

other units can thus be calculate by summing the direct and indirect effects.

21
Note that

V [(I − ρW)−1∆B
−1
u + (I − ρW)−1ϵ] = V [(I − ρW)−1(∆B

−1
u + ϵ)] (58)

renders the variance-covariance matrix V ar(y∗) = A
−1(∆(B′

B)−1∆′+IN)(A−1)′ ≡ V we previously worked

out before.
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9 Extension to Ordered Outcomes

Below, we provide a summary of our extension to the ordered outcomes case. A more detailed

discussion of this can be found in Appendix I. The way we conceptualize the outcome as a

latent variable is exactly the same as before. These are then categorized into C different

outcomes depending on the threshold cutpoints.
22

y
∗
= ρWy

∗
+Xβ +∆θ + ϵ, (61)

We conduct a series of Monte Carlo simulations with J = 49 and N = 980. We once

again find that our HSAR ordered probit performs favorably compared to the ordered spatial

probit model and is comparable to the multilevel probit model in terms of recovering the

estimates. We present the simulation results for the ordered outcomes in Appendix I to M

due to space constraints.

10 Application

We now demonstrate the utility of our model by analyzing the diffusion process of civil

rights protests in the United States in the 1960s. There are good theoretical reasons not to

overlook the (potential) diffusion process of civil rights protests. Theoretically, scholars have

debated whether and to what extent protests diffuse in various contexts (e.g., Hale, 2019). In

the context of the United States’ civil rights protests in the 1960s, sociologists have pointed

out various mechanisms through which protests might have spread. For example, Andrews

22
The discussion on estimating the cutpoints is relegated to Appendix I.
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and Biggs (2006) argue that local newspapers played an important role in the diffusion of

protests across nearby cities. At the same time, we argue that the potential diffusion process

across states has to be taken into account for at least two reasons. First, cities nearby may

be dispersed across different states. A cursory glance of the map showing where the sit-ins

in the 1960s occurred suggests that there might have been a potential diffusion process for

neighboring cities across North Carolina and Virginia. Second, historical accounts suggest

that interstate diffusion process might be an important factor to take into account. For

example, past research shows that activists traveled extensively with interstate buses as part

of the civil rights movement (Andrews and Biggs, 2006). By no means, do we suggest that

the analysis here is complete − the purpose of this exercise to compare the performance

across the various models.

We use the dataset provided by Mazumder (2018) and investigate the potential causes

of civil rights protests. We take various modeling approaches and compare the coefficient

estimates from the different models. The unit of analysis is county in the United States.

The dependent variable is whether a civil rights protest took place at least once during the

period, coded as 1 if any protest took place and 0 otherwise. For our covariates, we include

the percentage of urban population, the percentage of black population, the median age and

the median years of school education. We use various model specifications to demonstrate

the differences across the models. We first estimate the model using ordinary least squares,

then sequentially estimate the model using probit, multilevel random intercept probit,
23

SAR Probit using Bayesian MCMC methods,
24

and finally our hierarchical SAR probit. The

23
Implemented with the lme4 package by Bates et al. (2015).

24
Implemented with the spatialprobit package by Wilhelm and de Matos (2013).
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random intercepts at the state level are added for the multilevel random intercept probit

model and for our hierarchical SAR probit model. We try two different samples with just

the 16 states in the southern part of the United States
25

and 48 states. We used 10,000

iterations and discarded the first 2,000 as a burn-in.

Table 1: Comparison of Models (16 states)

Non-Spatial Linear Probit Multilevel Probit Spatial Probit Hierarchical Spatial Probit
Percentage of Urban Population 0.003 0.021 0.028 0.033 0.027

(0.000) (0.003) (0.003) (0.003) (0.003)

Percentage of Black Population 0.004 0.036 0.034 0.032 0.034
(0.000) (0.004) (0.005) (0.005) (0.005)

Median Age -0.004 -0.018 0.000 -0.039 0.003
(0.002) (0.014) (0.019) (0.015) (0.019)

Median School Years 0.046 0.274 0.283 0.233 0.298
(0.008) (0.058) (0.075) (0.058) (0.072)

Constant -0.366 -4.936 -5.737 -3.528 -5.961
(0.078) (0.702) (0.947) (0.743) (1.093)

ρ − − − 0.696 -0.093
(0.025) (0.083)

λ − − − − 0.690
(0.186)

N 1378 1378 1378 1378 1378

Standard errors in parentheses

The most salient difference that stands out is the large estimates of the ρ coefficient

when using the spatial autoregressive probit model as shown in Model 4 in Tables 1 and 2.

On the other hand, the estimate obtained from using our hierarchical spatial probit model

renders more conservative estimates. This is consistent with the simulations results that

we discussed above regarding how the spatial probit model may often overestimate the ρ

coefficient.

Bayesian methods offer an intuitive way to estimate the uncertainty around the effect.

For each iteration after discarding the burn-in draws, we used the formula in equation (52)

25
This includes Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Missis-

sippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.
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Table 2: Comparison of Models (48 states)

Non-Spatial Linear Probit Multilevel Probit Spatial Probit Hierarchical Spatial Probit
Model 1 Model 2 Model 3 Model 4 Model 5

Percentage of Urban Population 0.003 0.027 0.031 0.040 0.028
(0.000) (0.002) (0.002) (0.003) (0.002)

Percentage of Black Population 0.005 0.041 0.038 0.033 0.034
(0.000) (0.003) (0.004) (0.004) (0.004)

Median Age 0.001 0.012 0.009 -0.023 0.010
(0.001) (0.010) (0.014) (0.010) (0.013)

Median School Years 0.020 0.152 0.183 0.099 0.146
(0.004) 0.042 (0.056) (0.038) (0.054)

Constant -0.300 -5.015 -5.569 -3.053 -4.687
(0.050) (0.567) (0.765) (0.526) (0.767)

ρ − − − 0.700 0.152
(0.015) (0.072)

λ − − − − 0.452
(0.233)

N 3043 3043 3043 3043 3043

Standard errors in parentheses

to calculate the effect. We repeated this procedure for all the observations in our data

and calculated the mean over the observations to compute the average direct effect. This

naturally allows us to create credible intervals for the average direct effect. For the analysis

using 48 states, the average marginal effect [and the associated 95 percent simulated intervals]

were found to be 0.003 [0.002, 0.004] for percentage of urban population, 0.003 [0.002, 0.004]

for percentage of black population, 0.001 [-0.001, 0.004] for median age, and 0.015 [0.004,

0.027] for median school years. Noting that the quantities are those that take into account

of all the spatial interaction effects, the effects obtained then can be interpreted as (direct)

average marginal effect (Hanmer and Ozan Kalkan, 2013, 266). Due to space constraints,

we show the distributions of the simulated effects in Appendix N.
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11 Conclusion

We proposed a novel method that accounts for multilevel spatial interdependence in binary

and ordered outcomes. Our proposed HSAR model is estimated using Markov Chain Monte

Carlo methods and outperforms competing approaches. Overall, our Monte Carlo simula-

tions demonstrated that in DGPs with multiple variations of spatial interdependence—no

spatial interdependence in any level, spatial interdependence only in one level, or spatial

interdependence in two levels—the HSAR model either performs favorably or outperforms

other competing approaches. As a result, among theories and models of spatial interdepen-

dence in binary and ordered outcomes, the HSAR model can be considered a general model

and could also serve as a robustness check for results from other models that capture spatial

interdependence in the outcome. We also demonstrated how researchers can calculate spatial

effects of substantive interest and demonstrated the utility of our model with an application

to Civil Rights protest data in the United States. We provide an R package that can help

researchers estimate this model and calculate the resulting substantive effects with ease.
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A Binary Probit J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table A1: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.009 -0.03 -0.005 -0.004 0.369 0.268 -0.319 -0.007 0.02
SD 0.068 0.214 0.173 0.076 0.054 0.076 0.078 0.147 0.086
RMSE 0.069 0.216 0.173 0.076 0.373 0.278 0.328 0.147 0.089

Table A2: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.011 -0.044 0.006 0.007 0.372 0.262 -0.329 -0.014 0.016
SD 0.075 0.199 0.294 0.079 0.069 0.115 0.074 0.216 0.074
RMSE 0.076 0.204 0.294 0.079 0.378 0.287 0.337 0.216 0.076

Table A3: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias 0 -0.043 -0.037 0.001 0.402 0.275 -0.35 -0.013 0.006
SD 0.072 0.143 0.338 0.076 0.055 0.121 0.081 0.263 0.068
RMSE 0.072 0.149 0.34 0.076 0.405 0.3 0.359 0.264 0.069

Table A4: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.007 -0.027 0.028 -0.009 0.254 0.283 -0.384 -0.194 -0.025
SD 0.061 0.224 0.149 0.072 0.039 0.075 0.082 0.22 0.075
RMSE 0.061 0.225 0.152 0.073 0.257 0.292 0.392 0.293 0.079

A2



Table A5: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.012 -0.057 -0.008 -0.033 0.259 0.272 -0.41 -0.217 -0.028
SD 0.055 0.19 0.222 0.08 0.039 0.09 0.076 0.27 0.084
RMSE 0.057 0.199 0.222 0.087 0.261 0.286 0.417 0.347 0.088

Table A6: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.023 -0.036 0.082 -0.034 0.282 0.279 -0.431 -0.256 -0.029
SD 0.057 0.158 0.331 0.071 0.049 0.136 0.087 0.408 0.081
RMSE 0.061 0.162 0.341 0.078 0.286 0.31 0.44 0.482 0.086

Table A7: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.04 -0.023 0.036 -0.079 0.173 0.283 -0.45 -0.303 -0.133
SD 0.05 0.203 0.156 0.084 0.036 0.072 0.102 0.245 0.081
RMSE 0.064 0.205 0.16 0.116 0.176 0.292 0.461 0.39 0.156

Table A8: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.037 -0.08 0.042 -0.086 0.174 0.276 -0.475 -0.322 -0.12
SD 0.047 0.197 0.209 0.088 0.038 0.094 0.076 0.359 0.073
RMSE 0.059 0.212 0.213 0.123 0.178 0.292 0.481 0.482 0.141

Table A9: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.055 -0.098 0.034 -0.109 0.199 0.29 -0.495 -0.403 -0.116
SD 0.049 0.167 0.276 0.094 0.042 0.129 0.104 0.516 0.092
RMSE 0.073 0.194 0.278 0.144 0.203 0.318 0.506 0.655 0.149
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B Binary Probit J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table B10: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.003 -0.048 -0.015 0.011 0.348 0.258 -0.383 0.018 0.016
SD 0.07 0.229 0.161 0.077 0.056 0.085 0.075 0.164 0.076
RMSE 0.07 0.234 0.162 0.078 0.353 0.272 0.39 0.165 0.078

Table B11: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.016 -0.083 -0.029 -0.001 0.371 0.239 -0.372 -0.04 0.023
SD 0.068 0.19 0.25 0.076 0.059 0.114 0.077 0.235 0.074
RMSE 0.07 0.207 0.252 0.076 0.376 0.265 0.38 0.238 0.078

Table B12: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.011 -0.034 -0.009 0.004 0.403 0.268 -0.426 -0.033 0.013
SD 0.079 0.158 0.434 0.073 0.05 0.137 0.077 0.31 0.073
RMSE 0.079 0.162 0.434 0.073 0.406 0.301 0.433 0.312 0.074

Table B13: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.01 -0.055 -0.002 -0.016 0.25 0.239 -0.434 -0.168 0.042
SD 0.062 0.218 0.155 0.071 0.038 0.066 0.065 0.173 0.091
RMSE 0.063 0.225 0.155 0.072 0.253 0.248 0.439 0.241 0.1
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Table B14: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.006 -0.07 0.027 -0.014 0.25 0.269 -0.448 -0.2 0.02
SD 0.049 0.2 0.203 0.077 0.044 0.107 0.083 0.306 0.083
RMSE 0.049 0.212 0.205 0.078 0.254 0.29 0.455 0.366 0.085

Table B15: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.017 -0.076 0.017 -0.022 0.286 0.291 -0.498 -0.169 0.038
SD 0.056 0.194 0.351 0.086 0.044 0.132 0.08 0.423 0.075
RMSE 0.058 0.208 0.352 0.089 0.289 0.32 0.505 0.456 0.084

Table B16: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.039 0.01 0.073 -0.095 0.15 0.249 -0.478 -0.37 -0.027
SD 0.044 0.214 0.138 0.068 0.037 0.072 0.088 0.242 0.086
RMSE 0.059 0.214 0.156 0.116 0.154 0.259 0.486 0.443 0.09

Table B17: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.043 -0.06 0.044 -0.095 0.18 0.282 -0.517 -0.336 -0.036
SD 0.044 0.221 0.222 0.07 0.04 0.1 0.093 0.359 0.083
RMSE 0.061 0.229 0.226 0.118 0.185 0.299 0.526 0.491 0.09

Table B18: Binary Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.045 -0.073 0.034 -0.104 0.19 0.289 -0.558 -0.357 -0.043
SD 0.048 0.164 0.335 0.083 0.04 0.118 0.081 0.47 0.085
RMSE 0.066 0.179 0.337 0.133 0.195 0.312 0.564 0.59 0.095
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C Binary Probit J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table C19: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.005 -0.055 -0.011 0.017 0.155 0.122 -0.107 -0.002 0.017
SD 0.074 0.236 0.132 0.075 0.071 0.083 0.061 0.113 0.077
RMSE 0.074 0.242 0.132 0.077 0.17 0.148 0.123 0.113 0.079

Table C20: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.02 -0.058 -0.005 0.004 0.148 0.114 -0.103 -0.009 0.019
SD 0.07 0.242 0.177 0.072 0.071 0.097 0.061 0.157 0.073
RMSE 0.073 0.249 0.177 0.072 0.164 0.15 0.12 0.157 0.076

Table C21: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.014 -0.098 -0.058 0 0.184 0.135 -0.133 -0.006 0.005
SD 0.066 0.217 0.242 0.069 0.063 0.098 0.059 0.188 0.067
RMSE 0.068 0.238 0.249 0.069 0.195 0.167 0.146 0.188 0.067

Table C22: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.003 -0.031 0.004 -0.003 0.119 0.138 -0.149 -0.202 -0.024
SD 0.056 0.239 0.128 0.074 0.043 0.066 0.066 0.163 0.068
RMSE 0.056 0.241 0.128 0.074 0.127 0.153 0.163 0.26 0.072
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Table C23: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.005 -0.06 -0.007 0.001 0.123 0.132 -0.17 -0.209 -0.028
SD 0.058 0.212 0.154 0.079 0.042 0.083 0.065 0.195 0.071
RMSE 0.058 0.22 0.154 0.079 0.13 0.156 0.182 0.286 0.076

Table C24: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.006 -0.091 -0.019 -0.004 0.136 0.139 -0.179 -0.24 -0.024
SD 0.059 0.208 0.262 0.074 0.052 0.115 0.077 0.297 0.079
RMSE 0.06 0.227 0.263 0.074 0.146 0.181 0.194 0.382 0.082

Table C25: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.016 -0.011 0.009 -0.045 0.062 0.136 -0.197 -0.332 -0.11
SD 0.048 0.212 0.118 0.076 0.032 0.064 0.088 0.186 0.079
RMSE 0.05 0.212 0.119 0.088 0.069 0.151 0.216 0.381 0.135

Table C26: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.034 -0.052 0.006 -0.049 0.062 0.132 -0.222 -0.33 -0.111
SD 0.049 0.185 0.156 0.073 0.034 0.084 0.069 0.261 0.069
RMSE 0.059 0.192 0.156 0.087 0.07 0.156 0.232 0.421 0.131

Table C27: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.038 -0.08 0.024 -0.055 0.081 0.148 -0.241 -0.411 -0.096
SD 0.05 0.207 0.228 0.077 0.035 0.109 0.092 0.365 0.085
RMSE 0.063 0.222 0.229 0.095 0.088 0.184 0.258 0.55 0.128
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D Binary Probit J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table D28: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias 0.013 -0.044 -0.009 0.01 0.125 0.11 -0.134 0.013 0.012
SD 0.062 0.236 0.134 0.081 0.064 0.083 0.072 0.12 0.074
RMSE 0.063 0.241 0.134 0.082 0.141 0.138 0.152 0.12 0.075

Table D29: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.006 -0.089 -0.028 0.023 0.15 0.099 -0.127 -0.024 0.015
SD 0.059 0.204 0.179 0.071 0.07 0.101 0.063 0.174 0.07
RMSE 0.059 0.223 0.182 0.074 0.165 0.142 0.142 0.175 0.071

Table D30: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.028 -0.091 0.001 0.013 0.174 0.12 -0.165 -0.025 0.012
SD 0.061 0.171 0.231 0.069 0.056 0.127 0.071 0.229 0.07
RMSE 0.067 0.194 0.231 0.07 0.183 0.175 0.18 0.23 0.071

Table D31: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.005 -0.029 0.006 0.001 0.113 0.112 -0.185 -0.157 0.041
SD 0.048 0.233 0.129 0.07 0.044 0.062 0.068 0.137 0.079
RMSE 0.048 0.235 0.129 0.07 0.121 0.128 0.197 0.209 0.089
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Table D32: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.009 -0.103 -0.011 0 0.108 0.126 -0.187 -0.208 0.027
SD 0.056 0.218 0.167 0.064 0.046 0.099 0.07 0.229 0.077
RMSE 0.057 0.241 0.167 0.064 0.117 0.16 0.2 0.309 0.082

Table D33: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.014 -0.082 0.027 -0.01 0.132 0.147 -0.229 -0.173 0.048
SD 0.053 0.207 0.237 0.07 0.042 0.113 0.074 0.296 0.072
RMSE 0.054 0.223 0.238 0.071 0.138 0.185 0.241 0.343 0.087

Table D34: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.023 -0.024 0.019 -0.033 0.045 0.102 -0.201 -0.37 -0.014
SD 0.039 0.245 0.107 0.075 0.034 0.068 0.08 0.179 0.077
RMSE 0.046 0.247 0.108 0.082 0.056 0.123 0.217 0.411 0.078

Table D35: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.028 -0.086 0.003 -0.05 0.06 0.133 -0.239 -0.347 -0.011
SD 0.043 0.209 0.135 0.076 0.033 0.086 0.081 0.265 0.075
RMSE 0.052 0.226 0.135 0.091 0.069 0.158 0.252 0.437 0.076

Table D36: Binary Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.035 -0.046 0.035 -0.054 0.068 0.141 -0.272 -0.348 -0.021
SD 0.049 0.184 0.246 0.077 0.039 0.104 0.073 0.33 0.076
RMSE 0.06 0.19 0.249 0.094 0.078 0.175 0.281 0.479 0.079
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E Binary Probit J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table E37: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.027 -0.059 -0.024 0.058 0.345 0.208 -0.296 -0.051 0.018
SD 0.126 0.285 0.324 0.14 0.109 0.146 0.144 0.242 0.136
RMSE 0.129 0.291 0.325 0.151 0.362 0.255 0.329 0.248 0.137

Table E38: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.03 -0.159 0.004 0.03 0.365 0.245 -0.317 -0.027 0.048
SD 0.125 0.313 0.509 0.136 0.111 0.193 0.131 0.349 0.144
RMSE 0.128 0.351 0.509 0.139 0.381 0.312 0.343 0.35 0.152

Table E39: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.012 -0.161 0.007 0.023 0.384 0.277 -0.324 0.035 0.057
SD 0.12 0.264 0.732 0.137 0.132 0.276 0.137 0.546 0.122
RMSE 0.121 0.309 0.732 0.139 0.406 0.391 0.352 0.547 0.135

Table E40: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.044 -0.02 -0.09 0.015 0.25 0.245 -0.305 -0.075 -0.026
SD 0.088 0.3 0.353 0.12 0.068 0.133 0.149 0.383 0.123
RMSE 0.098 0.3 0.364 0.121 0.259 0.279 0.34 0.39 0.126

E10



Table E41: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.031 -0.146 0.022 -0.02 0.265 0.281 -0.363 -0.157 -0.016
SD 0.097 0.308 0.446 0.13 0.08 0.192 0.15 0.538 0.139
RMSE 0.102 0.341 0.446 0.132 0.276 0.341 0.393 0.561 0.14

Table E42: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.044 -0.178 -0.018 -0.015 0.253 0.282 -0.43 -0.135 -0.036
SD 0.122 0.305 0.671 0.157 0.078 0.226 0.174 0.822 0.141
RMSE 0.13 0.353 0.671 0.158 0.264 0.361 0.464 0.833 0.146

Table E43: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.051 -0.003 0.001 -0.051 0.149 0.266 -0.444 -0.437 -0.106
SD 0.081 0.306 0.341 0.125 0.074 0.127 0.135 0.493 0.143
RMSE 0.096 0.306 0.341 0.135 0.167 0.294 0.464 0.659 0.178

Table E44: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.056 -0.134 -0.001 -0.093 0.162 0.271 -0.46 -0.343 -0.109
SD 0.086 0.315 0.465 0.141 0.075 0.181 0.15 0.7 0.137
RMSE 0.103 0.342 0.465 0.169 0.179 0.326 0.483 0.78 0.175

Table E45: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.085 -0.172 0.003 -0.087 0.191 0.299 -0.502 -0.234 -0.05
SD 0.109 0.273 0.71 0.155 0.074 0.236 0.177 1.337 0.156
RMSE 0.139 0.323 0.71 0.178 0.205 0.381 0.532 1.357 0.164
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F Binary Probit J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table F46: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.03 -0.01 -0.047 0.03 0.324 0.269 -0.34 0.025 0.011
SD 0.115 0.27 0.327 0.124 0.11 0.168 0.131 0.29 0.123
RMSE 0.118 0.27 0.33 0.128 0.342 0.317 0.365 0.291 0.123

Table F47: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.029 -0.148 -0.084 0.037 0.344 0.245 -0.37 -0.004 0.026
SD 0.134 0.3 0.521 0.126 0.098 0.199 0.136 0.38 0.129
RMSE 0.137 0.335 0.528 0.132 0.358 0.316 0.394 0.38 0.131

Table F48: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.034 -0.2 0.02 0.033 0.33 0.254 -0.355 -0.013 0.03
SD 0.114 0.259 0.64 0.153 0.117 0.251 0.137 0.478 0.141
RMSE 0.119 0.327 0.64 0.157 0.35 0.357 0.38 0.479 0.144

Table F49: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.036 -0.003 -0.038 -0.004 0.21 0.238 -0.409 -0.277 0.059
SD 0.104 0.298 0.503 0.144 0.085 0.168 0.145 0.415 0.168
RMSE 0.11 0.298 0.504 0.144 0.227 0.291 0.434 0.499 0.178
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Table F50: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.049 -0.148 -0.018 -0.002 0.234 0.264 -0.418 -0.178 0.028
SD 0.115 0.313 0.624 0.134 0.089 0.211 0.129 0.477 0.144
RMSE 0.125 0.346 0.624 0.134 0.25 0.338 0.438 0.509 0.147

Table F51: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.029 -0.127 0.049 -0.009 0.254 0.258 -0.442 -0.22 0.029
SD 0.106 0.25 0.721 0.144 0.077 0.263 0.15 0.966 0.163
RMSE 0.11 0.28 0.723 0.144 0.265 0.368 0.466 0.991 0.166

Table F52: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.062 0.024 0.01 -0.065 0.164 0.251 -0.471 -0.454 -0.006
SD 0.072 0.286 0.331 0.143 0.077 0.162 0.132 0.511 0.165
RMSE 0.095 0.287 0.332 0.157 0.182 0.299 0.489 0.684 0.165

Table F53: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.059 -0.124 0.006 -0.091 0.16 0.275 -0.475 -0.247 -0.036
SD 0.084 0.293 0.438 0.127 0.067 0.178 0.208 0.677 0.152
RMSE 0.103 0.318 0.438 0.156 0.174 0.327 0.519 0.721 0.156

Table F54: Binary Probit: J = 16, N = 320, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.058 -0.223 0.058 -0.082 0.172 0.244 -0.488 -0.485 0.01
SD 0.071 0.282 0.497 0.127 0.081 0.256 0.201 1.165 0.147
RMSE 0.091 0.36 0.5 0.152 0.191 0.354 0.528 1.261 0.148
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G Binary Probit J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table G55: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.024 -0.001 0.003 0.021 0.227 0.135 -0.174 -0.038 0.021
SD 0.12 0.298 0.285 0.116 0.122 0.141 0.133 0.177 0.131
RMSE 0.123 0.298 0.285 0.118 0.258 0.195 0.219 0.181 0.132

Table G56: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.019 -0.134 0.012 0.031 0.246 0.169 -0.194 -0.022 0.039
SD 0.124 0.299 0.35 0.133 0.125 0.183 0.126 0.25 0.136
RMSE 0.125 0.328 0.35 0.137 0.276 0.25 0.232 0.251 0.141

Table G57: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.03 -0.228 -0.01 0.044 0.269 0.2 -0.197 0.02 0.037
SD 0.125 0.303 0.539 0.136 0.144 0.258 0.12 0.383 0.12
RMSE 0.129 0.379 0.539 0.143 0.305 0.327 0.231 0.384 0.126

Table G58: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.025 -0.063 0.01 -0.005 0.178 0.171 -0.182 -0.091 -0.033
SD 0.102 0.321 0.425 0.135 0.068 0.132 0.147 0.275 0.126
RMSE 0.105 0.327 0.425 0.135 0.191 0.216 0.234 0.29 0.13
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Table G59: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.025 -0.143 -0.008 0 0.196 0.213 -0.237 -0.164 -0.01
SD 0.112 0.281 0.32 0.13 0.078 0.175 0.142 0.377 0.133
RMSE 0.115 0.315 0.32 0.13 0.211 0.275 0.276 0.411 0.133

Table G60: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.026 -0.168 -0.007 0.012 0.179 0.207 -0.283 -0.125 -0.027
SD 0.094 0.275 0.416 0.144 0.075 0.215 0.168 0.511 0.138
RMSE 0.097 0.322 0.416 0.145 0.194 0.298 0.329 0.526 0.14

Table G61: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.043 -0.002 -0.034 -0.058 0.093 0.188 -0.304 -0.431 -0.102
SD 0.081 0.306 0.241 0.139 0.073 0.122 0.124 0.337 0.116
RMSE 0.092 0.306 0.244 0.151 0.118 0.224 0.328 0.547 0.154

Table G62: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.038 -0.173 0.023 -0.02 0.103 0.198 -0.323 -0.351 -0.067
SD 0.069 0.261 0.324 0.141 0.072 0.174 0.148 0.427 0.141
RMSE 0.079 0.313 0.324 0.143 0.126 0.264 0.356 0.553 0.156

Table G63: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.066 -0.236 -0.076 -0.074 0.124 0.225 -0.361 -0.215 -0.031
SD 0.097 0.287 0.495 0.143 0.069 0.226 0.17 0.703 0.134
RMSE 0.118 0.371 0.501 0.161 0.142 0.319 0.399 0.736 0.138
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H Binary Probit J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table H64: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.028 0.002 -0.004 0.026 0.215 0.188 -0.205 0.015 0.018
SD 0.113 0.288 0.237 0.126 0.12 0.166 0.116 0.217 0.111
RMSE 0.116 0.288 0.237 0.129 0.246 0.251 0.235 0.217 0.113

Table H65: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.011 -0.116 -0.061 0.023 0.22 0.169 -0.237 0.001 0.012
SD 0.106 0.287 0.422 0.128 0.115 0.19 0.129 0.283 0.124
RMSE 0.107 0.309 0.426 0.13 0.248 0.254 0.27 0.283 0.124

Table H66: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias 0.014 -0.176 0.014 0.026 0.21 0.165 -0.203 -0.021 0.045
SD 0.097 0.252 0.47 0.134 0.125 0.242 0.146 0.346 0.138
RMSE 0.098 0.307 0.471 0.136 0.245 0.293 0.25 0.346 0.145

Table H67: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.022 -0.023 -0.02 0.011 0.132 0.158 -0.267 -0.268 0.062
SD 0.109 0.263 0.26 0.129 0.077 0.163 0.14 0.303 0.132
RMSE 0.111 0.264 0.261 0.129 0.153 0.227 0.301 0.404 0.145
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Table H68: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.03 -0.177 -0.043 0.032 0.156 0.187 -0.277 -0.195 0.034
SD 0.092 0.308 0.36 0.139 0.091 0.2 0.128 0.352 0.137
RMSE 0.096 0.355 0.362 0.142 0.18 0.274 0.306 0.402 0.141

Table H69: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.016 -0.212 -0.057 0.013 0.177 0.181 -0.296 -0.182 0.012
SD 0.101 0.279 0.516 0.145 0.089 0.263 0.14 0.52 0.12
RMSE 0.102 0.35 0.519 0.146 0.198 0.319 0.328 0.551 0.12

Table H70: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.059 -0.045 -0.046 -0.025 0.096 0.176 -0.332 -0.452 0.021
SD 0.086 0.302 0.266 0.137 0.065 0.156 0.132 0.367 0.154
RMSE 0.105 0.305 0.27 0.139 0.116 0.235 0.357 0.582 0.156

Table H71: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.045 -0.15 -0.014 -0.037 0.091 0.196 -0.339 -0.252 -0.025
SD 0.068 0.283 0.314 0.133 0.068 0.171 0.197 0.452 0.145
RMSE 0.082 0.32 0.314 0.138 0.114 0.26 0.392 0.518 0.147

Table H72: Binary Probit: J = 16, N = 320, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β0 β1 ρ β0 β1 β0 β1

Bias -0.063 -0.208 -0.045 -0.052 0.103 0.17 -0.348 -0.418 0.016
SD 0.095 0.313 0.492 0.144 0.071 0.241 0.192 0.808 0.123
RMSE 0.114 0.376 0.494 0.153 0.125 0.295 0.398 0.909 0.124
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I Ordered Probit

Extending the algorithm applied above to ordered outcomes is relatively straightforward.

In the case of regular spatial ordered probit with three categories, LeSage and Pace (2009)

shows that the spatial ordered probit is a straightforward extension of the spatial binary

probit model. We can apply the same algorithm as the binary probit case other than minute

changes needed for generating y
∗
and estimating ϕc which represent the cutoff thresholds

for categorizing the latent values into different discrete outcomes. Once again, if we con-

ceptualize the outcome as a continuous latent variable, the observation yij is of category c

if

yij = c if ϕc−1 < y
∗
ij ≤ ϕc (62)

LeSage and Pace (2009, 297) notes that for an ordered case of C alternatives, three

values of ϕ are fixed, namely ϕ0 = −∞, ϕ1 = 0 and ϕC = +∞ while the thresholds ϕc

for c = 2, ..., C − 1 are to be estimated. The details for estimating these parameters are

explained in LeSage and Pace (2009, 297-299). We use the codes from the spatialprobit

package (Wilhelm and de Matos, 2013) for estimating these cutpoints for our hierarchical

ordered spatial probit model.

We show the results for the additional simulations where J = 49 and N = 980, σ
2
u = 1.0

similar to the binary case. We compare the results from our hierarchical ordered spatial pro-

bit model to the ordered spatial probit model implemented with the spatialprobit package

(Wilhelm and de Matos, 2013) and the multilevel probit model implemented with the ordi-
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nal package (Christensen, 2019).

The results for the bias in β̂1 are presented in Figure I1. We see that the hierarchical

spatial ordered probit model again performs favorably compared to the ordered spatial probit

model and is comparable to the multilevel probit model in terms of recovering the estimates.

The results for ρ̂ are similar to those of the binary probit case: we see that the ordered

spatial probit model consistently overestimates ρ. We present other simulation results as

tables below.
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Figure I1: Bias in β̂1 for J = 49, N = 980, σ
2
u = 1.0

• HSAR ◆ Multilevel ■ SAR

Figure I2: Bias in ρ̂ for J = 49, N = 980, σ
2
u = 1.0

• HSAR ■ SAR
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J Ordered Probit J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table J73: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.001 -0.038 0.009 0.367 -0.339 0.001
SD 0.058 0.222 0.075 0.065 0.047 0.071
RMSE 0.058 0.226 0.076 0.372 0.343 0.071

Table J74: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.017 -0.065 -0.014 0.37 -0.35 0
SD 0.063 0.208 0.075 0.072 0.044 0.062
RMSE 0.065 0.218 0.077 0.377 0.353 0.062

Table J75: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.005 -0.096 -0.013 0.423 -0.375 -0.006
SD 0.055 0.168 0.072 0.076 0.041 0.06
RMSE 0.055 0.194 0.073 0.43 0.377 0.06

Table J76: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.017 -0.002 -0.024 0.286 -0.397 -0.039
SD 0.054 0.218 0.065 0.044 0.05 0.069
RMSE 0.057 0.218 0.069 0.289 0.4 0.079
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Table J77: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.016 -0.075 -0.034 0.288 -0.406 -0.036
SD 0.054 0.185 0.064 0.047 0.048 0.069
RMSE 0.056 0.2 0.073 0.292 0.409 0.078

Table J78: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.017 -0.042 -0.054 0.325 -0.433 -0.041
SD 0.048 0.179 0.078 0.05 0.05 0.069
RMSE 0.051 0.184 0.095 0.329 0.436 0.08

Table J79: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.031 0.007 -0.071 0.195 -0.464 -0.141
SD 0.034 0.21 0.067 0.029 0.052 0.072
RMSE 0.046 0.21 0.097 0.197 0.467 0.158

Table J80: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.045 -0.049 -0.097 0.199 -0.476 -0.13
SD 0.04 0.18 0.068 0.03 0.051 0.066
RMSE 0.06 0.186 0.118 0.201 0.479 0.145

Table J81: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.0, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.042 -0.095 -0.118 0.219 -0.507 -0.125
SD 0.042 0.203 0.072 0.032 0.058 0.073
RMSE 0.06 0.224 0.138 0.221 0.51 0.145
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K Ordered Probit J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table K82: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.001 -0.034 -0.013 0.343 -0.404 0.003
SD 0.054 0.209 0.067 0.064 0.049 0.07
RMSE 0.054 0.212 0.068 0.349 0.407 0.07

Table K83: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.002 -0.059 -0.011 0.367 -0.416 0.012
SD 0.056 0.2 0.068 0.065 0.05 0.064
RMSE 0.057 0.208 0.069 0.373 0.419 0.065

Table K84: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.016 -0.056 -0.029 0.396 -0.427 0.002
SD 0.063 0.161 0.06 0.071 0.052 0.066
RMSE 0.065 0.171 0.067 0.402 0.43 0.066

Table K85: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.012 -0.015 -0.027 0.266 -0.455 0.028
SD 0.047 0.218 0.061 0.042 0.048 0.072
RMSE 0.048 0.218 0.066 0.269 0.458 0.077
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Table K86: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.013 -0.016 -0.035 0.278 -0.464 0.015
SD 0.044 0.167 0.063 0.046 0.051 0.071
RMSE 0.045 0.168 0.072 0.281 0.467 0.073

Table K87: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.025 -0.08 -0.059 0.303 -0.481 0.021
SD 0.049 0.175 0.073 0.048 0.053 0.067
RMSE 0.055 0.193 0.094 0.307 0.484 0.071

Table K88: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.033 -0.022 -0.086 0.177 -0.513 -0.04
SD 0.033 0.213 0.067 0.028 0.045 0.07
RMSE 0.046 0.214 0.109 0.179 0.515 0.08

Table K89: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.034 0.004 -0.09 0.187 -0.525 -0.042
SD 0.038 0.21 0.066 0.03 0.051 0.074
RMSE 0.051 0.21 0.111 0.189 0.528 0.085

Table K90: Ordered Probit: J = 49, N = 980, σ
2
u = 1.0, ρx = 0.3, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.037 -0.106 -0.105 0.203 -0.544 -0.053
SD 0.034 0.185 0.075 0.032 0.054 0.071
RMSE 0.05 0.213 0.129 0.205 0.547 0.089
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L Ordered Probit J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table L91: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β1 ρ β1 β1

Bias 0.004 -0.073 -0.002 0.126 -0.221 0.004
SD 0.057 0.229 0.061 0.056 0.043 0.067
RMSE 0.057 0.241 0.061 0.138 0.226 0.068

Table L92: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.01 -0.045 -0.001 0.123 -0.226 0.004
SD 0.059 0.23 0.065 0.066 0.04 0.063
RMSE 0.06 0.234 0.065 0.139 0.229 0.063

Table L93: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β1 ρ β1 β1

Bias 0.008 -0.077 0.006 0.162 -0.252 -0.002
SD 0.068 0.181 0.071 0.066 0.039 0.058
RMSE 0.069 0.197 0.071 0.175 0.255 0.058

Table L94: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β1 ρ β1 β1

Bias 0 -0.039 0.009 0.107 -0.245 -0.034
SD 0.051 0.259 0.068 0.049 0.049 0.066
RMSE 0.051 0.262 0.069 0.117 0.25 0.074
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Table L95: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.005 -0.077 0.001 0.097 -0.252 -0.038
SD 0.044 0.206 0.066 0.053 0.042 0.06
RMSE 0.044 0.22 0.066 0.111 0.256 0.071

Table L96: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.011 -0.076 -0.007 0.129 -0.275 -0.031
SD 0.055 0.177 0.074 0.055 0.042 0.073
RMSE 0.056 0.193 0.074 0.141 0.279 0.079

Table L97: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.023 0.011 -0.031 0.078 -0.288 -0.116
SD 0.037 0.224 0.067 0.035 0.052 0.067
RMSE 0.043 0.224 0.073 0.086 0.293 0.134

Table L98: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.027 -0.081 -0.043 0.068 -0.298 -0.113
SD 0.047 0.202 0.068 0.039 0.045 0.063
RMSE 0.054 0.217 0.08 0.079 0.301 0.13

Table L99: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.0, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.021 -0.076 -0.058 0.095 -0.322 -0.104
SD 0.038 0.216 0.065 0.043 0.052 0.069
RMSE 0.044 0.229 0.087 0.105 0.327 0.125
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M Ordered Probit J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3,

ρ ∈ {0, 0.3, 0.5} and λ ∈ {0, 0.3, 0.5}

Table M100: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.0

Experiment 1 HSAR SAR Multilevel
ρ = 0.0, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.004 -0.045 0 0.108 -0.255 0.001
SD 0.058 0.242 0.067 0.054 0.047 0.07
RMSE 0.058 0.247 0.067 0.121 0.26 0.07

Table M101: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.3

Experiment 2 HSAR SAR Multilevel
ρ = 0.0, λ = 0.3 ρ λ β1 ρ β1 β1

Bias 0.005 -0.083 0.001 0.131 -0.261 0.009
SD 0.059 0.206 0.06 0.06 0.042 0.061
RMSE 0.059 0.223 0.06 0.144 0.264 0.061

Table M102: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.0, λ = 0.5

Experiment 3 HSAR SAR Multilevel
ρ = 0.0, λ = 0.5 ρ λ β1 ρ β1 β1

Bias 0.003 -0.125 -0.009 0.135 -0.271 0.004
SD 0.061 0.197 0.073 0.059 0.045 0.065
RMSE 0.061 0.234 0.073 0.147 0.275 0.065

Table M103: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.0

Experiment 4 HSAR SAR Multilevel
ρ = 0.3, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.018 -0.068 -0.006 0.087 -0.286 0.029
SD 0.041 0.225 0.064 0.043 0.044 0.066
RMSE 0.045 0.235 0.064 0.097 0.29 0.072
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Table M104: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.3

Experiment 5 HSAR SAR Multilevel
ρ = 0.3, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.02 -0.073 -0.002 0.1 -0.293 0.02
SD 0.039 0.21 0.069 0.044 0.046 0.069
RMSE 0.044 0.222 0.069 0.109 0.297 0.072

Table M105: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.3, λ = 0.5

Experiment 6 HSAR SAR Multilevel
ρ = 0.3, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.015 -0.057 -0.005 0.11 -0.309 0.032
SD 0.045 0.185 0.067 0.051 0.046 0.064
RMSE 0.048 0.193 0.067 0.121 0.313 0.071

Table M106: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.0

Experiment 7 HSAR SAR Multilevel
ρ = 0.5, λ = 0.0 ρ λ β1 ρ β1 β1

Bias -0.013 -0.061 -0.044 0.054 -0.331 -0.022
SD 0.037 0.206 0.068 0.034 0.045 0.064
RMSE 0.039 0.215 0.081 0.064 0.334 0.068

Table M107: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.3

Experiment 8 HSAR SAR Multilevel
ρ = 0.5, λ = 0.3 ρ λ β1 ρ β1 β1

Bias -0.029 -0.06 -0.041 0.067 -0.345 -0.023
SD 0.039 0.183 0.07 0.032 0.046 0.067
RMSE 0.049 0.193 0.081 0.074 0.348 0.071

Table M108: Ordered Probit: J = 49, N = 980, σ
2
u = 0.5, ρx = 0.3, ρ = 0.5, λ = 0.5

Experiment 9 HSAR SAR Multilevel
ρ = 0.5, λ = 0.5 ρ λ β1 ρ β1 β1

Bias -0.028 -0.093 -0.061 0.077 -0.356 -0.029
SD 0.034 0.171 0.064 0.039 0.054 0.069
RMSE 0.044 0.195 0.089 0.087 0.36 0.075
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N Application

Figure N3: Distribution of the Simulated Effect of Urban Population (16 states)

Figure N4: Distribution of the Simulated Effect of Black Population (16 states)
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Figure N5: Distribution of the Simulated Effect of Median Age (16 states)

Figure N6: Distribution of the Simulated Effect of Median Years of School Education (16
states)
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Figure N7: Distribution of the Simulated Effect of Urban Population (48 states)

Figure N8: Distribution of the Simulated Effect of Black Population (48 states)
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Figure N9: Distribution of the Simulated Effect of Median Age (48 states)

Figure N10: Distribution of the Simulated Effect of Median Years of School Education (48
states)
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